Stabilized Space-Time Finite Element Formulations for Free-Surface Flows
نویسنده
چکیده
Aspects of a method for 3D finite element computation of unsteady, incompressible freesurface flow are presented. The approach is based on the Deformable-Spatial-Domain/ Stabilized Space-Time (DSD/SST) finite element formulation, which takes automatically into account the deformation of the elements in response to the motion of the free surface. The free-surface elevation is governed by a kinematic free-surface condition, which is also solved with a stabilized formulation. A new governing equation and stabilized formulation is derived for cases where the channel walls are not vertical. The parallel implementation based on MPI message-passing standard is fully portable, and have been demonstrated to be scalable on a range of architectures. A 3D computation of a flow past a spillway of a dam is shown as an example application.
منابع مشابه
COMPUTATION OF UNSTEADY INCOMPRESSIBLE FLOWS WITH THE STABILIZED FINITE ELEMENT METHODS: SPACE-TIME FORMULATIONS, ITERATIVE STRATEGIES AND MASSIVELY PARALLEL IMPLEMENTATIONSt
We discuss the stabilized finite element computation of unsteady incompressible flows, with emphasis on the space-time formulations, iterative solution techniques and implementations on the massively parallel architectures such as the Connection Machines. The stabilization technique employed in this paper is the Galerkinjleast-squares (GLS) method. The Deformable-Spatial-DomainjStabilized-Space...
متن کاملParallel finite element computation of free - surface flows
In this paper we present parallel 2D and 3D finite element computation of unsteady, incompressible free-surface flows. The computations are based on the DeformableSpatial-Domain/Stabilized Space-Time (DSD/SST) finite element formulation, which takes automatically into account the motion of the free surface. The free-surface height is governed by a kinematic free-surface condition, which is also...
متن کاملInterface-tracking and interface-capturing techniques for finite element computation of moving boundaries and interfaces
We provide an overview of some of the interface-tracking and interface-capturing techniques we developed for finite element computation of flow problems with moving boundaries and interfaces. This category of flow problems includes fluid–particle, fluid–object and fluid–structure interactions; free-surface and two-fluid flows; and flows with moving mechanical components. Both classes of techniq...
متن کاملStabilized Space-time FEM and its Applications to Free-surface Flows
Fluid flow simulations that involve deforming domains, in the presence of one or more moving boundaries or fluidfluid interfaces, continue to present unique challenges, and form one of the frontiers of computational science. Freesurface flows in particular involve the motion of the fluid interface which is unknown at the outset of the simulation. Thus, both the domain and the flow field are par...
متن کاملStable variational approximations of boundary value problems for Willmore flow with Gaussian curvature
We study numerical approximations for geometric evolution equations arising as gradient flows for energy functionals that are quadratic in the principal curvatures of a two-dimensional surface. Beside the well-known Willmore and Helfrich flows we will also consider flows involving the Gaussian curvature of the surface. Boundary conditions for these flows are highly nonlinear, and we use a varia...
متن کامل